Навигация
 
альт-амап
<< В начало < Предыдущая Следующая > В конец >>

АЛЬФА-РАСПАД

(а-распад), испускание альфа-частиц атомными ядрами в процессе самопроизвольного (спонтанного) радиоактивного распада (см. Радиоактивность). При А.-р. из радиоактивного ("материнского") ядра с атомным номером Z и массовым числом А испускается ядро гелия (-частица), т. е. два протона и два нейтрона в связанном состоянии; в результате А.-р. образуется конечное ("дочернее") ядро с атомным номером Z = 2 и массовым числом А =4. Так, напр., радий испускает а-частицу и переходит в радон

Известно (1968) ок. 200 сс-радиоактив-ных ядер; большая часть их тяжелее свинца  Нек-рое количество а-ра-диоактивных изотопов имеется в области значенийсреди ядер с недостаточным количеством нейтронов, т. н. нейтронодефицитных ядер (см. Ядро атомное). Так, в области редких земель имеется несколько-радиоактивных ядер (напр., ). Экспериментальному обнаружению а-активных ядер с А<200 мешают огромные времена жизни (см. Время жизни), характерные для ядер с небольшой энергией А.-р. (см. ниже).

При А.-р. определённого радиоактивного изотопа вылетающие а-частицы имеют, грубо говоря, одну и ту же энергию. Энергия, выделяющаяся при А.-р., делится между а-частицей и ядром в отношении, обратно пропорциональном их массам. Для разных изотопов энергия а-частиц различна. Она тем больше, чем меньше период полураспада T1/2 данного изотопа (или его время жизни). У всех известных a-радиоактивных изотопов энергия а-частиц лежит в пределах от 2 Мэв до 9 Мэв. Времена жизни a-радиоактивных ядер колеблются в огромном интервале значений, примерно от 3*10-7 сек для 212Ро до 5 • 1015 лет для 142Се. Времена жизни и энергии а-частиц приведены в таблице в ст. Изотопы; там же указаны и все а-радиоактивные изотопы, а-частицы теряют энергию при прохождении через вещество гл. обр. при их взаимодействиях с электронными оболочками атомов и молекул, при к-рых происходит ионизация и тех и других, возбуждение и, наконец, диссоциация молекул. Для полной потери энергии а-частицы требуется очень большое число столкновений (104-105). Поэтому в среднем все а-частицы данной энергии проходят примерно одинаковые пути с небольшим разбросом (3-4% ). Так как столкновение тяжёлой а-частицы с лёгким электроном не может заметно изменить направление её движения, то этот путь-пробег а-частипы - прямолинеен.

Т. о., а-частицы данной энергии имеют вполне определённый пробег до остановки; напр., в воздухе при норм. атм. давлении и комнатной темп-ре а-частицы имеют пробеги прибл. от 2,5 до 8,5 см. По длине следов а-частиц в камере Вильсона можно качественно определить изотопный состав радиоактивного образца. На рис. 1 приведена фотография следов а-частиц, испускаемых при А.-р.

При вылете из ядра а-частица испытывает действие двух различных сил. Очень большие по величине и действующие на близком расстоянии ядерные силы стремятся удержать частицу внутри ядра, в то время как кулоновское (электрическое) взаимодействие возникшей а-ча-стицы с остальной частью ядра обусловливает появление силы отталкивания.

На рис. 2 показана зависимость потенциальной энергии взаимодействия а-частицы с конечным ядром (ядром, остающимся после вылета а-частицы) от расстояния до центра ядра. Из рис. видно, что а-частица должна при вылете преодолеть потенциальный барьер.

Полная (т. е. потенциальная плюс кинетическая) энергия а-частицы в разных ядрах может принимать как отрицательные значения, так - с ростом заряда ядра - и положительные. В этом последнем случае А.-р. будет энергетически разрешён. Сплошной линией на рис. 2 изображена суммарная энергия а-частицы в ядре (или, другими словами, энер-гетич. уровень а-частицы в ядре). Положительный избыток полной энергии, обозначенный буквой Е, представляет собой разницу между массой радиоактивного ядра и суммой масс а-частицы и конечного ядра.

Рис. 2. Потенциальная энергия взаимодействия а-частицы с конечным ядром. V - высота потенциального барьера, В - его ширина, E - энергия а-частицы, r - расстояние от центра ядра.

Если бы не существовало потенциального барьера, высота к-рого V, напр., для 23892U равна 15 Мэв, то а-частица с положит, кинетич. энергией Е (для 23892U кинетич. энергия составляла бы ~4,2 Мэв) могла бы свободно покидать ядро. Практически это привело бы к тому, что ядра с положит, значениями Е вообще не существовали бы в природе. Однако известно, что в природе существуют ядра с Z>50, для к-рых Е положительно.

С другой стороны, с точки зрения клас-сич. механики, а-частица с энергией Е < V должна постоянно находиться внутри ядра, потому что для преодоления потенциального барьера у неё не хватает энергии. В рамках классич. представлений явление а-радиоактивности понять невозможно.

Квантовая механика, учитывая волновую природу а-частиц, показывает, что существует конечная вероятность "просачивания" a-частицы через потенциальный барьер (туннельный эффект). Барьер становится как бы частично прозрачным для а-частяцы. Прозрачность барьера зависит от его высоты V и ширины В следующим образом:

прозрачность

Здесь b - величина, зависящая от радиуса r ядра, т - масса а-частицы, Е -её энергия (см. рис. 2). Прозрачность (проницаемость) барьера тем больше, чем меньше его ширина и чем ближе к вершине потенциального барьера расположен энергетич. уровень а-частицы (чем больше энергия а-частицы в ядре).

Вероятность А.-р. пропорциональна проницаемости потенциального барьера. Поскольку с увеличением энергии а-частицы уменьшается ширина барьера (рис. 2), становится понятной полученная экспериментально резкая зависимость вероятности А.-р. от Е - кинетич. энергии а-частиц. Напр., при увеличении энергии испускаемых а-частиц с 5 до 6 Мэв вероятность А.-р. увеличивается в 107 раз.

Вероятность А.-р. зависит также и от вероятности образования а-частицы в ядре. Прежде чем а-частица покинет ядро, она должна там сформироваться. Постоянно а-частицы в ядре не существуют. Четыре элементарные частицы, из к-рых она состоит, участвуют в сложном движении нуклонов в ядре и нет никакого способа отличить их от др. частиц этого ядра. Однако существует заметная (~10-6) вероятность образования а-частицы в ядре на какое-то короткое время в результате случайного сближения 4 нуклонов. Только когда а-частица покинет ядро и окажется достаточно далеко от него, можно рассматривать a-частицу и ядро как две отдельные частицы.

Вероятность А.-р. резко зависит от размера ядра [см. ф-лу (*)], что позволяет использовать А.-р. для определения размеров тяжёлых ядер.

Как уже упоминалось, энергия а-частиц, вылетающих из ядра в результате А.-р., должна быть точно равна энергетич. эквиваленту разности масс ядер до и после А.-р., т. е. величине Е. Это утверждение справедливо только для случая, когда конечное ядро A-4Z-2N образуется в основном состоянии. Но если конечное ядро образуется в одном из возбуждённых состояний, то энергия а-частицы будет меньше на величину энергии этого возбуждённого состояния.

Рис. 3. Спектр а-частиц от распада висмута-212. Высота линий соответствует вероятности испускания а-частиц с данной энергией.

Действительно, экспериментально показано, что а-излучение многих радиоактивных элементов состоит из неск. групп а-частиц, энергии к-рых близки друг к другу ("тонкая структура" а-спектра).

В качестве примера на рис. 3 показан спектр-частиц от распада  (виcмут-212).

На рис. 4 изображена энергетич. схема

а-распада на основное и возбуждённые состояния конечного ядра

Рис. 4.-Энергетическая схема а-распада висмута-212. Максимальная энергия а-частиц соответствует переходу в основное состояние, a1, a2, a3 и a4 - альфа-частицы, испускаемые при переходе конечного ядра в одно из возбуждённых состояний.

Разность энергий между основной группой и линиями тонкой структуры составляет 0,04, 0,33, 0,47 и 0,49 Мэв. Экспериментально различить линии тонкой структуры сс-спектров можно только с помощью магнитных альфа-спектрометров.

Знание тонкой структуры спектров а-частиц позволяет вычислить энергию возбуждённых состояний конечного ядра.

Нек-рые радиоактивные изотопы испускают небольшое количество -частиц с энергиями, гораздо большими, чем энергия основной группы -частиц. Так, напр., в спектре -частиц от распада  присутствуют две группы с энергиями на 0,7 и 1,9 Мэв больше, чем энергия основной группы. Интенсивность этих двух групп т. н. длиннопробежных а-частиц составляет всего ~ 10-5 от полной интенсивности а-из-лучения. След одной из таких частиц виден на рис. 5. Существование длинно-пробежных частиц связано с тем, что А.-р. могут испытывать ядра, находящиеся в возбуждённом состоянии (с большей энергией).

Многие осн. понятия атомной и ядерной физики обязаны своим происхождением изучению a-радиоактивности. Теория А.-р., предложенная в 1928 Г. Га-мовым и независимо от него Г. Герни и Э. Кондоном, явилась первым применением квантовой механики к ядерным процессам. Изучение рассеяния а-частиц привело к понятию об атомном ядре как центре массы и положительного заряда атома. Облучение а-частицами лёгких элементов привело к открытию ядерных реакций и искусственной радиоактивности.

Лит.: Глесстон С., Атом. Атомное ядро. Атомная энергия, пер. с англ., М., 1961; Гольданский В. И., Лейки н Е. М., Превращения атомных ядер, М., 1958. В. С. Евсеев.



 
Большая советская энциклопедия
  [ АННОТАЦИЯ]   [а-абон]   [аборд-авар]   [авач-австрич]   [австрия - автомот]   [автомут-аграм]   [агран-аджз]   [аджи-азер]   [азеф-айя]   [ака-акоп]   [акост-акур]   [акус-алейж]   [алейк-ален]   [алеп-алле]   [алли-альбен]   [альбер-альп]   альт-амап   [амар-амим]   [амин-амуд]   [амул-анан]   [анап-андез]   [андер-анип]   [анис-антен]   [антер-антон]   [антоф-апел]   [апен-апшер]   [ар-аргум]   [аргун-аркт]   [арл-арсен]   [арсин-арха]   [архе-аса]   [асб-ассиз]   [ассим-астроп]   [астрос-атол]   [атом-афил]   [афин-ацет]   [ацид-аяч]