АЛЮМИНИЯ ОКИСЬ
глинозём, Аl2О3, соединение алюминия с кислородом; составная часть глин, исходный продукт для получения алюминия. Бесцветные кристаллы, (tпл 2050°С, tкип выше 3000°С. Известна в двух модификациях, а и гамма. Из них в природе встречается а-Аl2О3 в виде бесцветного минерала корунда; кристаллы a-Аl2О3, окрашенные окислами др. металлов в красный цвет - рубин, и в синий - сапфир, являются драгоценными камнями. Корунд кристаллизуется в гексагональной системе, плотность 3960 кг/м3; искусственно а-Аl2О3 можно получить нагреванием выше 900 °С гидроокиси алюминия или его солей. При нагревании алюминиевых солей в пределах 600-900°С образуется гамма-А12О3, кубич. модификация, которая выше этой темп-ры необратимо переходит в а-Аl2О3. Известны гидратированные (водные) формы Аl2О3 различного состава. К гидроокисям алюминия относятся: гидраргиллит (гиббсит) Аl(ОН)з, входящий в состав многих бокситов, и искусственно получаемая неустойчивая форма Аl(ОН)3 - байерит. Известна и неполная гидроокись алюминия - АlООН, существующая в двух модификациях - а (диаспор) и у (бёмит).
А. о. и её гидратированные формы нерастворимы в воде, обладают амфо-терными свойствами - взаимодействуют с кислотами и щелочами. Природный корунд на воздухе химически инертен и негигроскопичен. Со щелочами интенсивно реагирует ок. 1000°С, образуя растворимые в воде алюминаты щелочных металлов. Медленнее реагирует с SiO2 и кислыми шлаками с образованием алюмосиликатов, разлагается сплавлением с KHSO4.
Сырьём для получения А. о. служат бокситы, нефелины, каолины и другое сырьё, содержащее А1. Бокситы всегда загрязнены окислами железа или кремневой к-той. Для получения чистой А. о. бокситы перерабатывают нагреванием с СаО и Na2CO3 (сухой способ) или нагреванием с едким натром в автоклавах (способ Байера). При обоих способах А. о. в виде алюминатов переходит в раствор, к-рый затем разлагают пропусканием двуокиси углерода либо добавлением заранее приготовленной гидроокиси алюминия. В первом случае разложение происходит по уравнению 2[Аl(ОН)4]-+ СО2->2Аl(ОН)3 + СО32- + + Н2О. Разложение по второму способу основано на том, что раствор алюмината, полученный при нагревании в автоклаве, метастабилен. Добавляемая гидроокись алюминия ускоряет распад алюмината: [А1(ОН)4]- -> Аl(ОН)3 + ОН-. Полученную гидроокись алюминия прокаливают при 1200°С, в результате получается чистый глинозём.
Основное применение А. о.- производство алюминия. Корунд широко используют как абразивный материал (корундовые круги, наждак), а также для изготовления керамич. резцов и чрезвычайно огнеупорных материалов, в частности "плавленого глинозёма", служащего для футеровки цементных печей. Из мо-, нокристаллов корунда, полученных плавкой порошка А. о. с добавками окислов Cr, Fe, Ti, V, изготовляют опорные камни в точных механизмах и ювелирные изделия.
Дистилляцией чистого алюминия при 1650°С в атмосфере водорода, содержащей пары воды, получены "усы" (нитеобразные кристаллы) из А. о., обладающие огромной прочностью, близкой к теоретической. "Усы" из сапфира (а-А12Оз) диаметром 2-3 мкм обладают прочностью 16 Гн/м2, диаметром 10 мкм- 11 Гн/м3, "усы" больших диаметров -6,5-7 Гн/м2 (1 Гн/м2 = = 100 кгс/м2). Введение этих "усов" в конструкционные материалы, даже при условии частичного сохранения их прочности, позволяет получить ценные материалы для ракетостроения. Металлы, армированные такими волокнами, имеют более высокую прочность не только при низких, но и при высоких темп-рах.
Особым образом приготовленную т. н. активную А. о. в виде мелкокри-сталлич. порошка применяют как адсорбент и катализатор, причём её адсорбционные (и каталитические) свойства в большой степени зависят от качества и обработки исходных материалов и от способа приготовления. Как адсорбент активную А. о. широко применяют для хроматографич. анализа всевозможных органических и (реже) неорганич. веществ. Гидроокиси алюминия служат для произ-ва всевозможных его солей. Осторожным высушиванием студнеобразной гидроокиси получают алюмогель, пористое вещество, напоминающее фарфор, иногда прозрачное; алюмо-гель применяют в катализе; она служит одним из наиболее важных технич. адсорбентов.
Лит.: Лайнер А. И., Производство глинозема, М., 1961; Карролл-Порчинский Ц., Материалы будущего, пер. с англ., М., 1966. Ю. И. Романъков.
|